* Coastal Climate Change & Adaptation

Dan Lane, IOI-Canada,

Co-Director - C-Change (Canada)

Professor Emeritus, Telfer School of Management, University of Ottawa

Presentation to the 3rd China- ASEAN Academy on Oceans Law & Governance, NISCSS Haikou, Hainan

PART 2 - Morning, November 10, 2017

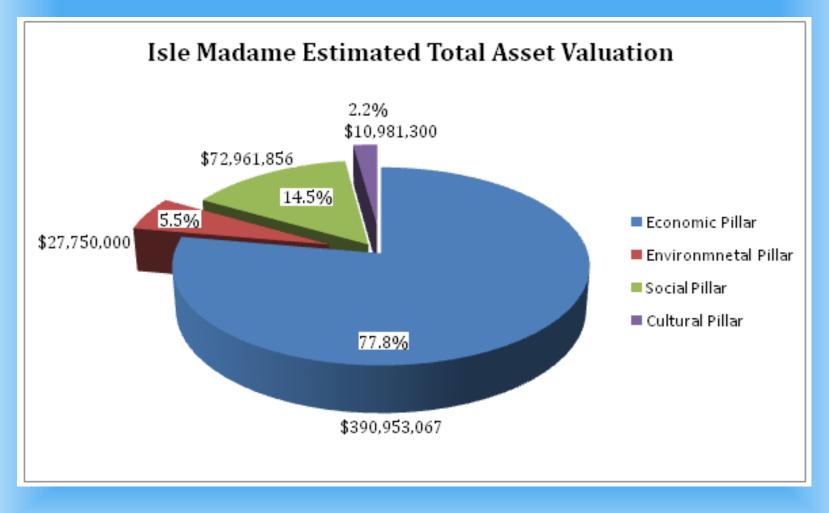
3rd China-ASEAN Academy on Oceans Law & Governance

1

*Coastal Climate Change & Adaptation - Outline

PART I - Morning

- 1. Introduction
- 2. Challenges for the 21st Century Coastal Zones
- **3.** Understanding Adaptation Needs Profiling
- 4. Pillars of Sustainability Reflecting Importance***
 PART II
- **5.** Assessing Vulnerabilities
- 6. Estimating Coastal Impacts
- 7. Adaptation Problem Solving and Strategy Options
- 8. Evaluating Decisions**
- 9. Climate Change Governance


**Class Assignment

*5. Assessing Vulnerabilities

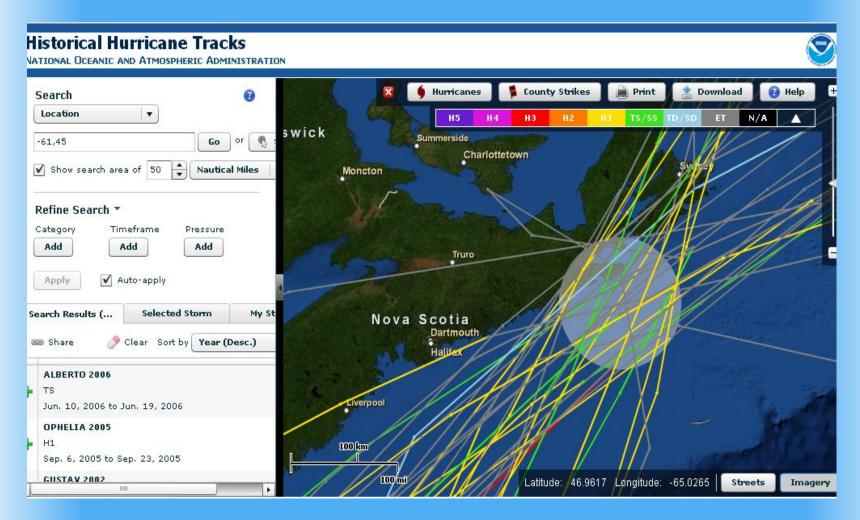
3rd China-ASEAN Academy on Oceans Law & Governance

3

* Isle Madame Asset (Pakdel 2011)

*Asset - At-Risk Assessment-Damage Model

Total Asset Value

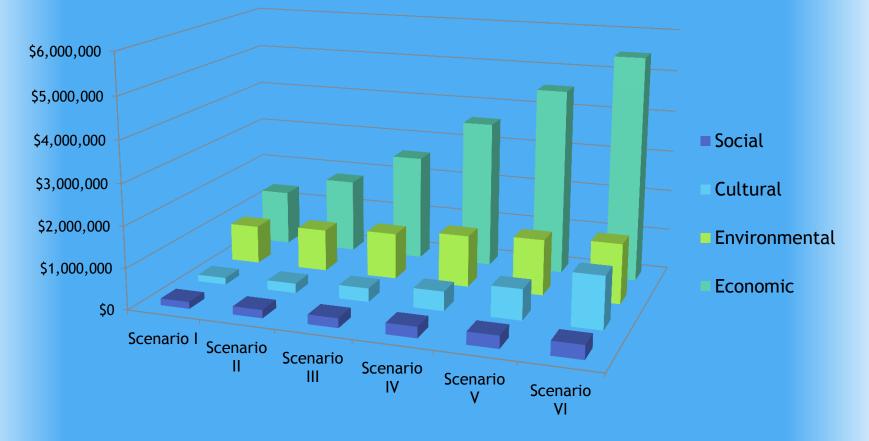

Asset at risk value

Actual damage value

3rd China-ASEAN Academy on Oceans Law & Governance

5

*Isle Madame Storms Review


2. Assessing Vulnerability Premium Crab plant -Jan 2, 2010 "No Name" storm

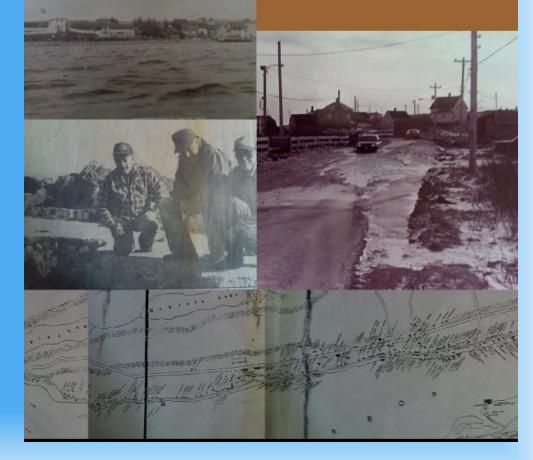
Source: www.coastalchange.ca Gallery

*6. Estimating Coastal Impacts

Isle Madame Total Estimated Damage Costs for Storm Scenarios I-VI

Université Sainte Anne

Isle Madame Vulnerability Report


Report Prepared by:

Aleasha (Boudreau) David, Recherchiste, Centre de recherche marine and Michelle Thériault, Coordinatrice, Centre de recherche marine

Isle Madame Research Project: Isle Madame Historical Documentation and Storm Monitoring Project (2011-2012)

- 1) What are the impacts of Typhoon Sarika?
- 1) How can the costs of the impacts be determined?
- 1) How can the impacts of future typhoons be avoided or lessened?

*7. Adaptation Problem Solving and Strategy Options

3rd China-ASEAN Academy on Oceans Law & Governance

PART 2-AM, November 10, 2017

* Objective: Adaptation Problem Solving

- 1. <u>Profile</u> the Community (Problem Definition & Data)
 - * GIS, local issues, key participants, identify community preferences, pairwise comparison (tradeoffs) AHP (*Lane et al 2015*)
- 2. <u>Assess</u> Vulnerability "hotspots" (Data Analysis)
 - * Determine potential impacts based on historical events, develop adaptation alternatives and options, costs (*Camare & Lane 2015*)

Part I

Part II

- **3.** <u>Simulate</u> Strategic Systems (Modelling & Analysis)
 - * System dynamics modelling, strategic planning period (Lane et al 2017)
- 4. Evaluate Strategy Alternatives
 - * Apply indices for Vulnerability, Resilience, Adaptive Capacity (Lane et al 2018)
- 5. <u>Recommend</u>, <u>Implement</u> & <u>Monitor</u>

* Adaptation Strategy Options (Pilkey & Young 2009)

(Photo: suburbanbloke/Flickr)

1. Protect

Hard armouring (sea walls, groins) Soft armouring (mangroves, wetlands)

- No changes to buildings or use
- Costly Requires expert design, needs periodic maintenance and upgrading

2. Accommodate

Continued use of lands / structures, with some changes

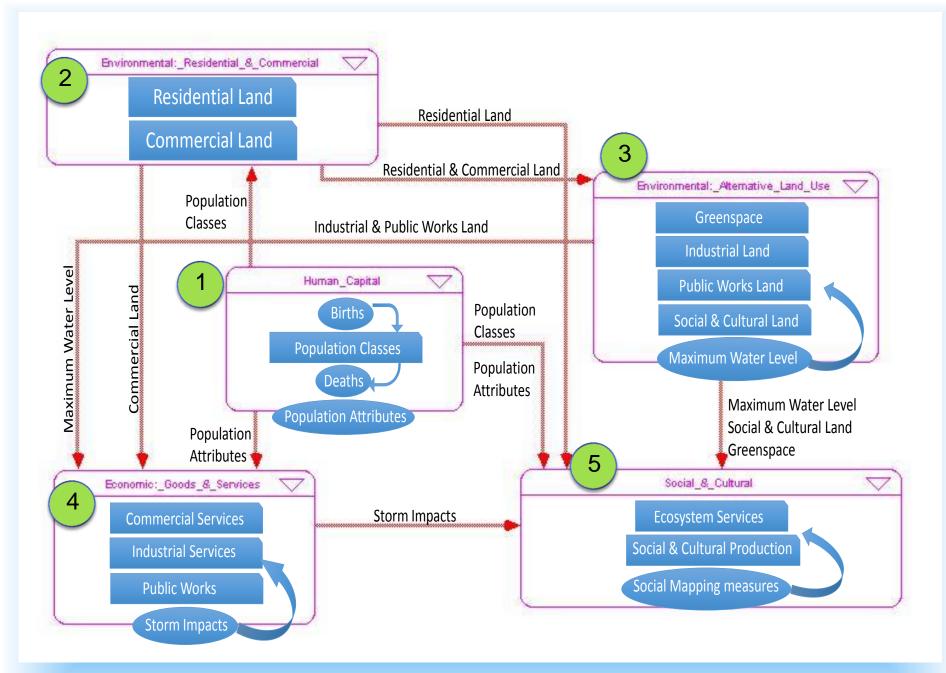
14

- Low costs / Low regrets
- No costs / No regrets (mangroves)

3. Retreat

Accept flooding and damage will occur

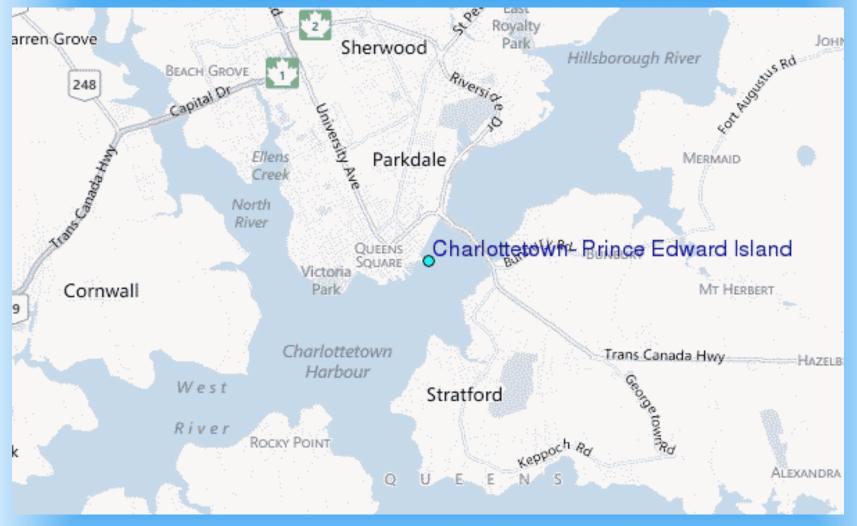
- Protect/accommodate not feasible
- Change uses, move structures


4. Do Nothing

14

Strategic Systems Simulation

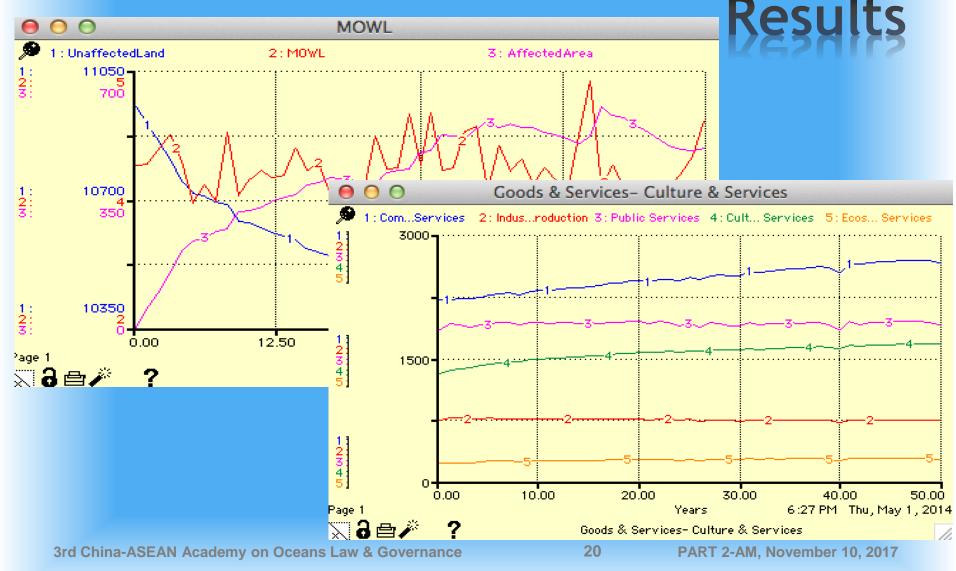
ODevelopment of specific adaptation strategies


- Protect, Accommodate, Retreat, Status Quo (Do Nothing)
- OApplication of Static and/or System Dynamics model
- OPillars of Sustainability/Community Preference
 - Environmental, Economic, Social & Cultural
- OAdaptation strategy evaluation indicatorsVulnerability, Resilience, Adaptive Capacity

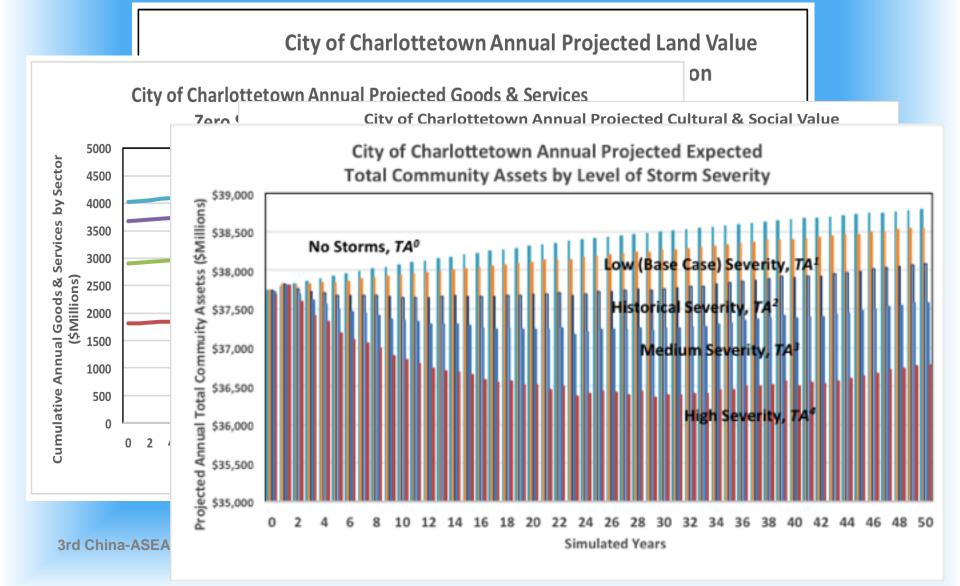
3rd China-ASEAN Academy on Oceans Law & Governance

16

*City of Charlottetown


* Charlottetown Attributed Land Value Assets

Space	Land Value	Description/Source
-		Description/Source
· /	(SM/acre)	
· · ·		
3,225	\$2.855	Housing - average discounted selling value/acre for
		January 2016 Multiple Listing Service (MLS)
		Ottawa listings for detached bungalows prorated to
		2012 Charlottetown average aggregate valuation;
		Royal LePage (2016)
2,680	\$3.484	Commercial property - average discounted selling
		value (to 2012) for January 2016 Multiple Listing
		Service (MLS) Ottawa listings for Business and
		Retail properties prorated to 2012 Charlottetown
		average aggregate valuation ; Royal LePage (2016)
1,239	\$4.149	Industrial property - average discounted selling
		value (to 2012) for January 2016 Multiple Listing
		Service (MLS) Ottawa listings for Industrial and
		Office properties prorated to 2012 Charlottetown
		average aggregate valuation ; Royal LePage (2016)
472	\$1.500	Estimated value of city park lands, sport fields,
		trails, open recreation space (Charlottetown 2007)
2,011	\$3.000	Estimated value of infrastructure for water,
		electrical power, and sewage/water treatment,
		roadways, bridges, maintenance (Charlottetown
		2007, 2010)
1,326	\$2.000	Estimated value of lands for schools, hospitals,
		community centres, libraries, arenas (Charlottetown
		2007)
	1,239 472 2,011	(acres) (\$M/acre) (2012) 3,225 3,225 \$2.855 2,680 \$3.484 1,239 \$4.149 472 \$1.500 2,011 \$3.000


* Charlottetown Annual Storm Levels, MOWL

Storm	Description	Application [^]	IPCC Analogy*
Severity			
I. Low	Modal MOWLs signal storms that result in	$\alpha = 2.0$ and	RCP 2.6 – GHG
(Base	minimal damage to property and	$\beta = 0.303$	emissions peak
Case)	infrastructure. This is the assumed storm	Max MOWL	2010-2020 then
	definition for the Base Case scenario	< 4.0m	decline substantially
II.	Modal MOWLs consistent with the historical	$\alpha = 3.0$ and	RCP 4.5 – GHG
Historical	data values for 1911-2005 and signal storms	$\beta = 0.303$	emissions peak by
	that result in occasional appreciable damage	Max MOWL	2040 then decline
	to property and infrastructure.	< 4.5m	
III.	Modal MOWLs signal storms consistent with	$\alpha = 3.5$ and	RCP 6.0 – GHG
Medium	the increasing historical trend since the	$\beta = 0.303$	emissions peak by
	beginning of the 21 st century and result in	Max MOWL	2080 then decline
	considerable damage to property and	<5.0m	
	infrastructure.		
IV. High	Modal MOWLs signal storms predicted with	$\alpha = 4.0$ and	RCP 8.5 – GHG
	high certainty into the 21 st century and result	$\beta = 0.303$	emissions continue
	in significant damage to property and	Max MOWL	to rise throughout
	infrastructure.	< 5.5m	21 st century

*System Rynamics View - STELLA

*Charlottetown Profile SD Results

*Charlottetown Controls

Adaptation	Description	Application:
Strategy, A _i		City of Charlottetown, P.E.I.
1) Protect	Physical coastlines reinforcement; 'hard'	-Construct 3.75m sea walls
	engineering - seawalls, breakwaters,	-Labor skills adjustment
	gabions and groins; 'soft' engineering -	(professional skills
	grading coastal cliffs, planting or	enhancement)
	maintaining existing vegetation	-Public service increase in cost
	(Ollerhead, 2006)	of \$100m investment over 5 yrs
2)	Construction of structures to reduce	-Labor skills adjustment for
Accommo-	storm damage (e.g., elevated houses),	structures
date	improve land-use, zoning plans to restrict	-Attributed land as Public
	permission of coastal constructions;	Works
	legislation and increasing natural	-Public service increase in cost
	resilience by rehabilitating coastal dunes	of \$50m investment over 5 yrs
	and wetlands (Pilkey and Young, 2009)	
3) Retreat	Abandon areas closest to the coastline,	Adjustment to work skills
	place temporary or dispensable structures	
	only in these areas; avoid direct impact	Attributed increase in land to
	from storms; land swapping, or	Greenspace
	management strategies such as rezoning,	
	insurance denial, or tax policies (Shaw et	Public service increase in cost
	al., 2002; Natural Resources Canada,	\$75m investment over 5 years
	2010)	
4)	Toleration of all storm damages without	No adaptation strategy
Status Quo	attempting to mitigate storm impacts;	(Do nothing/Status Quo)
(Do	arguably most commonly adopted	
Nothing)	strategy (McCulloch et al., 2002)	

* Charlottetown Simulation Scenarios

No.	Scenario Name	Controllable Variables -	Uncontrollable Variables -
		Adaptation Strategies for	IPCC Analogy/Storm Severity for
		Charlottetown	Charlottetown
RO	Base Case/	No adaptation strategy	Low severity storms,
	Benchmark	(Do nothing/Status Quo)	IPCC, RCP 2.6: 2.0 and
R1	Worst Case	No adaptation strategy	High severity storms,
		(Do nothing/Status Quo)	IPCC, RCP 8.5: 4.0 and
R2	Protect-Worst	Protect with 3.75m seawalls	High severity storms,
	Case Storms	Labor skills adjustment for sea	IPCC, RCP 8.5: 4.0 and
		walls construction	Strategy modification:
		(professional)	IF MOWL<3.75m then 'No Impacts' ELSE
		\$100m investment in 5yrs	'Impacts'
R3	Accommodate -	Labor skills adjustment	High severity storms,
	Worst Case	Attributed land as Public	IPCC, RCP 8.5: 4.0 and
	Storms	Works	Strategy modification:
		Public service increase cost	New MOWL = .75 Original MOWL
R4	Retreat - Worst	\$50m investment in 5 years	High covority storms
K4	Case Storms	Adjustment to work skills Public service increase cost	High severity storms, IPCC, RCP 8.5: 4.0 and
	Case Scorins	Increase in Greenspace	IFCC, RCF 0.J. 4.0 and
		\$75m investment in 5 years	
R5	Accommodate -	Labor skills adjustment	Historical severity storms,
		AttributedalandasrRublic	IPCC, RCP 4.5: 3.0 and
3		Works	Strategy modification:
		Public service increase	New MOWI = 75 Original MOWI

*8. Evaluating Decisions

3rd China-ASEAN Academy on Oceans Law & Governance

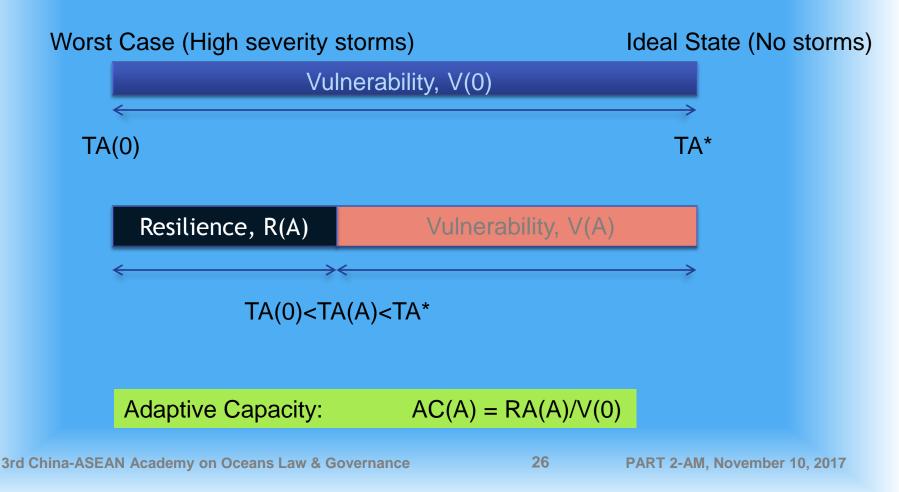
24

Evaluation of Strategy Alternatives

*Methods:

* Static analysis - AHP application, multiple participants (SEPS paper - *Camare & Lane 2015*)

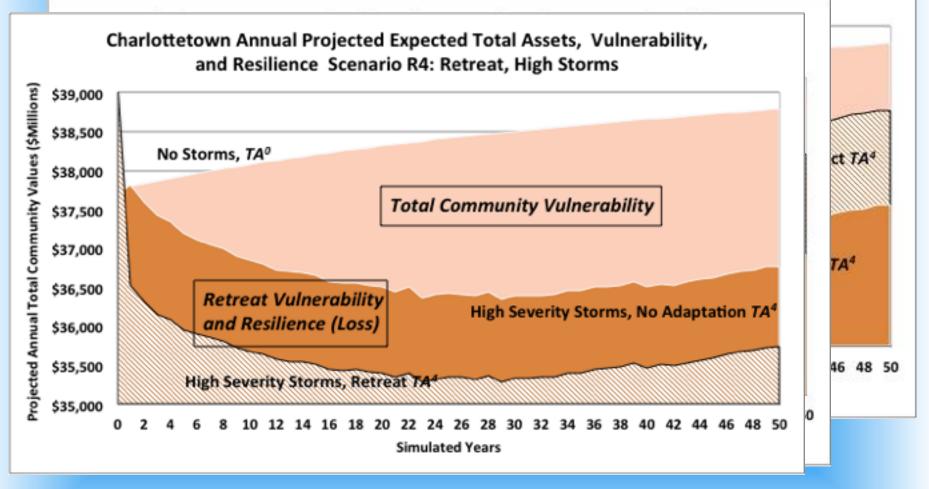
* Dynamic analysis - SD model over strategic planning period (50 years) - Lane et al 2017, 2018


*Indicators:

* Vulnerability - expected storm damage estimates by sustainability pillar

- * Resilience function of adaptation strategy as reduction of 'no action' vulnerability
- * Adaptive Capacity resilience (reduced vulnerability) as a proportion of total vulnerability

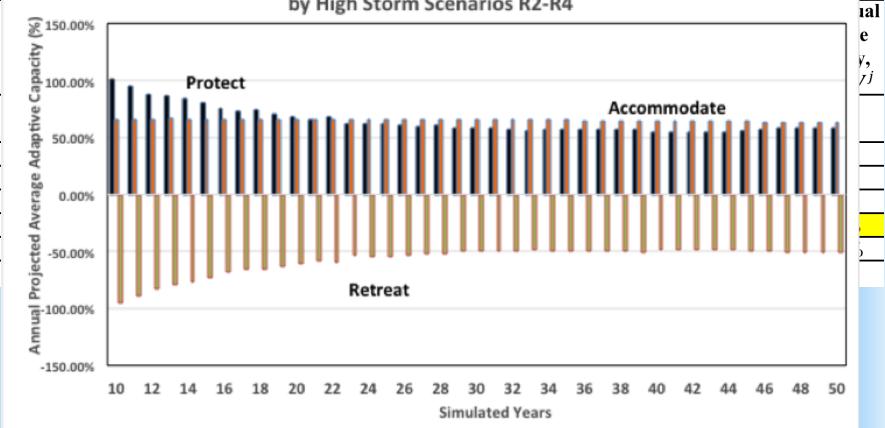
*Vulnerability Gap with Strategy Lane et al 2018


Community Asset Status

* Charlottetown Storm Simulation Results: Vulnerability & Resilience

Charlottetown Annual Projected Expected Total Assets, Vulnerability,

and Dacilianca Connaria D7: Dratact Wigh Ctorme



* Charlottetown Storm Simulation Results

*Charlottetown Storm Simulation Results: Adaptive Capacity

City of Charlottetown Annual Projected Average Adaptive Capacity by High Storm Scenarios R2-R4

* Evaluating Weighted Assets by Profile Priorities

*Different communities/nations have different priorities re the Pillars of Sustainability

- *Requires weighting the asset results corresponding to each adaptation scenario
- *Consider analysis of the Charlottetown problem weighted by the participants of the China-ASEAN Academy
- *Note similarities and differences among weights and preferred adaptation strategy options

* No Weights- Annualized Strategy Evaluation

Unweighted Evaluation of Adaptation Strategy Options by Pillar: The Case of Charlottetown Present Value of Annualized Assets (Millions\$CDN) \$40.00 \$30.00 Cultural \$20.00 Social Economic \$10.00 Environmental \$0.00 No Storms/No No Adaptation Accommodate Protect Retreat Adaptation Adaptation Strategy Options

*Participants' Exercise - Decision Evaluation

* Annualized Strategy Evaluation - table form with weights

	Sustainability Pillar Normalized Weights							Sustainability Pillar Idealized Weights				
National Group	Environmental	Economic	Social	Cultural	Total	Environmental	Economic	Social	Cultural			
China-ASEAN	0.28378	0.29357	0.22073	0.20191	1.0	0.96665	1.00000	0.75188	0.68777			
Indonesia	0.33694	0.24815	0.18384	0.23107	1.0	1.00000	0.73647	0.54560	0.68580			
Malaysia	0.33502	0.30030	0.20727	0.15740	1.0	1.00000	0.89637	0.61869	0.46983			
Singapore	0.27872	0.37927	0.20733	0.13468	1.0	0.73489	1.00000	0.54665	0.35509			
The Philippines	0.29468	0.29088	0.19630	0.21814	1.0	1.00000	0.98711	0.66615	0.74027			
Cambodia	0.27624	0.32720	0.19416	0.20240	1.0	0.84425	1.00000	0.59339	0.61857			
Laos	0.21579	0.46498	0.21032	0.10890	1.0	0.46409	1.00000	0.45231	0.23421			
Myanmar	0.23058	0.36069	0.20292	0.20581	1.0	0.63928	1.00000	0.56261	0.57060			
Thailand	0.30455	0.39251	0.17029	0.13265	1.0	0.77592	1.00000	0.43385	0.33795			
Vietnam	0.27112	0.30286	0.22902	0.19700	1.0	0.89522	1.00000	0.75620	0.65048			
China	0.28349	0.24957	0.23532	0.23162	1.0	1.00000	0.88034	0.83009	0.81702			

Charlottetown Flood Adaptation Strategy Asset Valuations

Present Value of Annualized Assets (50 yr simulation, \$CDN)

		Sus	tainability Pill	Total (Unweighted) Assets		
	Adaptation Strategies	Environmental	Economic	Social	Cultural	(Millions\$CDN2010)
0	No Storms/No Adaptation	\$4.40	\$33.25	\$0.40	\$0.33	\$38.38
1	No Adaptation	\$4.10	\$31.40	\$0.47	\$0.41	\$36.38
2	Protect	\$3.80	\$33.00	\$0.40	\$0.50	\$37.70
3	Accommodate	\$3.90	\$32.75	\$0.65	\$0.52	\$37.82
4	Retreat	\$3.60	\$30.50	\$0.67	\$0.55	\$35.32

* Decision form - to be completed by selected nation

(0) No Storms/No Adaptation

Weighted Results	Sustaina	bility Pillar W	Total (Weighted) Assets			
National Group	Environmental	Economic	Social	Cultural	(Millions\$CDN2010)	
China-ASEAN	\$4.25	\$33.25	\$0.30	\$0.23	\$38.03	
<your here="" nation=""></your>			·			

(1) No Adaptation

Weighted Results	Sustaina	bility Pillar W	Total (Weighted) Assets			
National Group	Environmental	Economic	Social	Cultural	(Millions\$CDN2010)	
China-ASEAN	\$3.96	\$31.40	\$0.35	\$0.28	\$36.00	
<your here="" nation=""></your>						

(2) Protect

Weighted Results	Sustaina	ability Pillar W	Total (Weighted) Assets		
National Group	Environmental	Economic	Social	Cultural	(Millions\$CDN2010)
China-ASEAN	\$3.67	\$33.00	\$0.30	\$0.34	\$37.32
<your here="" nation=""></your>					

(3) Accommodate

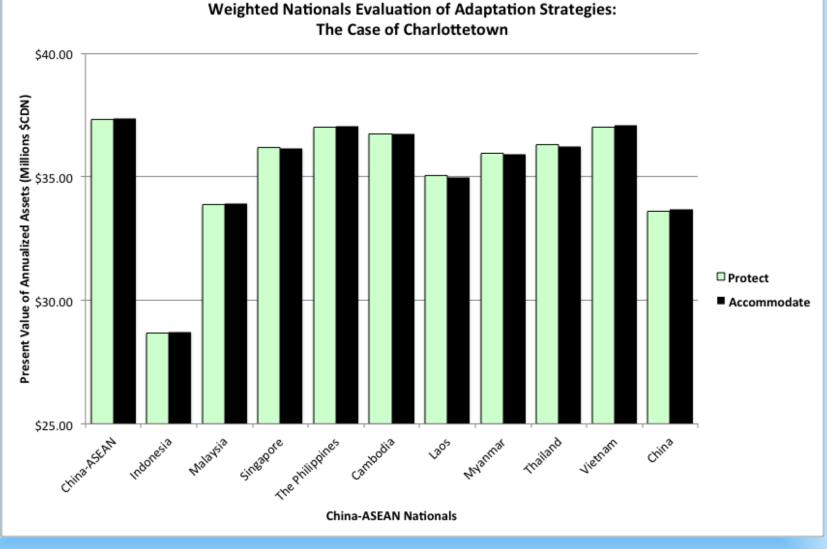
Weighted Results	Sustaina	bility Pillar W	Total (Weighted) Assets			
National Group	Environmental	Economic	Social	Cultural	(Millions\$CDN2010)	
China-ASEAN	\$3.77	\$32.75	\$0.49	\$0.36	\$37.37	
<your here="" nation=""></your>						

(4) Retreat

Weighted Results	Sustaina	bility Pillar W	Total (Weighted) Assets			
National Group	Environmental	Economic	Social	Cultural	(Millions\$CDN2010)	
	1					
China-ASEAN	\$3.48	\$30.50	\$0.50	\$0.38	\$34.86	
<your here="" nation=""></your>						

Nationals' Decision Evaluation

Total (Weighted) Annualized Assets (Millions\$CDN2010)


Weighted Results			•	•	-		
National Group	No Storms/	No Adaptation	Protect	Accommodate	Retreat	Preferred	Preferred
	No Adaptation					Assets Value	Decision
China-ASEAN	\$38.03	\$36.00	\$37.32	\$37.37	\$34.86	\$37.37	Accommodate

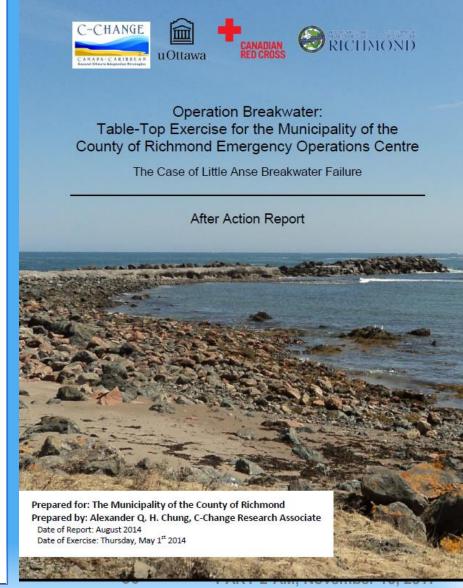
3rd China-ASEAN Academy on Oceans Law & Governance

34

PART 2-AM, November 10, 2017

* Weighted Nationals Evaluation

C-Change Little Anse Breakwater Workshop, May 1, 2014 Chung (2014)


Operation Breakwater: Tabletop Exercise for the Municipality of the County of Richmond Emergency Operations Centre

The Case of Little Anse Breakwater Failure

Alexander Q.H. Chung Telfer School of Management University of Ottawa

©Alexander Q.H. Chung 2014

	Dimension	Attribute	Charlottetown	lsle Madame	Gibsons	lqaluit	
Community Prepared- ness Index Chung, Mercer Clarke and Lane (in progress)	(1) Plans, Local Governance & Social Services (0.129)	Preparedness Planning (0.60)	0.734	0.464	0.339	0.339	
		Local Governance (0.20)	0.750	0.450	0.450	0.450	
		Social Services (0.20)	0.200	0.800	0.800	0.000	
	(2) Training, Education & Community Awareness (0.259)	Capacity Building (0.50)	0.500	0.500	0.250	0.375	
		Public Awareness (0.50)	0.467	0.305	0.263	0.473	
	(3) Resources & Emergency Services (0.195)	Incident Command Sys. (0.333)	1.000	1.000	1.000	1.000	
		Resources (0.333)	0.567	0.279	0.279	0.246	
		Emergency Operations (0.333)	0.334	0.334	0.334	0.334	
	(4) Communication & Collaboration (0.195)	Early Warning & Public Information (0.666) Community Collaborative	0.647	0.500	0.433	0.373	
		Networking (0.333)	0.600	0.800	0.500	0.700	
	(5) Monitoring & Forecasting (0.221)	Data Collection & Management (0.20)	0.333	0.111	0.167	0.056	
		Hazard & Vulnerability Analysis (0.40)	0.820	0.489	0.410	0.302	
		Environmental Forecasting (0.40)	0.778	0.389	0.389	0.611	
	Aggregate Preparedness & Response	Index Value	0.609	0.477	0.396	0.427	
	3rd China-ASEAN Academy on						

Oceans Law & Governance

* Conclusions toward improved community resilience:

* Enable community collaboration

* Designing 'community neighborhoods'; cell phones to inform community members or their neighbors' status and needs Lu(2013)

* Encourage social networking activities

- * increasing access and basic training of community members in electronic and other social networking and communication activities (e.g., Facebook, Twitter)
- * Support wellness, recreational lifestyle activities (Anielski, 2009)
- * Develop community logistics for emergency events Liu(2014)
- * Emergency preparedness workshops Chung(2014)
 - * Table Top exercise to inform local residents of the available emergency procedures and support, engage volunteer contributions and participation of community members

* Disseminate preparedness to local schools to inform families

3rd China-ASEAN Academy on Oceans Law & Governance

38 PART 2-AM, November 10, 2017

*9. Climate Change Governance

3rd China-ASEAN Academy on Oceans Law & Governance

39

*Climate Change Management

*Global Governance *UNFCCC, IPCC, COP21 (Paris), COP22 (Marrakech), COP23 (*Sendai Framework on SIDR *International Protocols *Canadian Initiatives *Community Participation and Response

*UNFCCC COP21 - Paris Accord

- *To keep global temperatures "well below" 2.0C (3.6F) above pre-industrial times and "endeavour to limit" them even more, to 1.5C
- *To limit the amount of greenhouse gases emitted by human activity to the same levels that trees, soil and oceans can absorb naturally, beginning at some point between 2050 and 2100
- *To review each country's contribution to cutting emissions every five years so they scale up to the challenge
- *For rich countries to help poorer nations by providing "climate finance" to adapt to climate change and switch to renewable energy. 3rd china-ASEAN Academy on Oceans Lagy Governance 41 PART 2-AM, November 10, 2017

*Paris Accord - Reaction

- * Canada: Ottawa's climate-change focus now turns to reaching a detailed national climate strategy with the provinces by early March 2016 while also moving toward a North American agreement on energy and environmental issues;
- * China: Xinhua called the deal "a particularly sweet victory for China, which emerged to take a leading role" in the negotiations. China's recent commitments on climate change as a sign of its new role as a world leader. In the past year, China has signed climate change agreements with the United States and France; submitted an Intended Nationally Determined Contribution to the UN, pledging to have emissions peaks by 2030; and committed 20 billion RMB (\$3.1 billion) to help developing countries deal with climate change.
- * ASEAN: A special working group on climate change focuses on addressing climate change in the global community. ASEAN acted in advance of COP21 (November 2015) in support of a global accord.

*COP23 - Bonn, Germany

*Opening Statement of COP23, November 6, 2017:

- * "The need for urgency is obvious. Our world is in distress from the extreme weather events caused by climate change destructive hurricanes, fires, floods, droughts, melting ice, and changes to agriculture that threaten our food security. All consistent with the science that now tells us that 2016 was a record year for carbon emissions."
- *Honourable J.V. Bainimarama, CF (Mil), OSt.J, MSD, jssc, psc Prime Minister and Minister for iTaukei Affairs, Sugar Industry, Foreign Affairs and Water Ways

*Sendai Framework

*Disaster Risk Reduction (weather events related)

- *Hyogo Framework for Action 2005-2015: Building the resilience of nations and communities to disasters
- *Sendai framework (2015) endorsed by the UN General Assembly following the 2015 3rd UN World Conference on Disaster Risk Reduction (WCDRR)

*"The Sendai Framework is a 15-year, voluntary, nonbinding agreement which recognizes that the State has the primary role to reduce disaster risk but that responsibility should be shared with other stakeholders including local government, the private sector and other stakeholders." UNISDR Website

44

*International protocols

*Some International organizations developing plans for climate change protection.

*UNDP *ICLEI *CARE *FCM

45

3rd China-ASEAN Academy on Oceans Law & Governance

China-ASEAN Advanced Academy on Oceans Law and Governance

*Local Community Response

*Resource needs

- *Bottom up
- *Community participation recycling, reusing, good practices
- *'Teach the children well'!

* References/Websites

- NASA National Aeronautic and Space Administration (USA) <u>http://www.nasa.gov/mission_pages/noaa-n/climate/climate_weather.html</u>
- 2016-01-23 07:48:38 Cold Weather to Continue into New Week CRIENGLISH.com Web Editor: Wang Kun http://english.cri.cn/12394/2016/01/23/4203s914225.htm
- IPCC, 2013: Summary for Policymakers. AR5. <u>https://www.ipcc.ch/report/ar5/</u>
- ASSESSMENT OF CANADA'S MARINE COASTS Natural Resources Canada document in development (2016) http://www.nrcan.gc.ca/environment/resources/publications/10766
- COIN (Coastal and Ocean Information Network) Atlantic (Canada) Coastal Sensitivity to Sea-level rise http://coinatlantic.ca/index.php/climate-change/sea-level-rise
- Guangdong Sea Level rise Globe and Mail Report, December 5, 2015 <u>http://www.theglobeandmail.com/news/rising-waters-prompt-chinas-sea-change-onclimate/article27608966/</u>
- Report of the UN Conference on Sustainable Development Rio de Janeiro, Brazil, June 20-22, 2012 http://www.uncsd2012.org/content/documents/814UNCSD%20REPORT%20final%20revs.pdf
- Coastal Zones: Solutions for the 21st Century Chapter 9 Managing Adaptation to Coastal Climate Change https://books.google.ca/
- Introduction to System Dynamics System Dynamics Society (NY, USA) <u>http://www.systemdynamics.org/what-is-s/</u>
- ArcGIS, Esri Systems <u>https://www.arcgis.com/features/</u>
- STELLA SD Software, ISEEE Systems <u>http://www.iseesystems.com</u>
- Vensim SD Software, Ventana Systems, Inc. <u>http://vensim.com</u>
- International Society on Multicriteria Decision Making (INFORMS) http://www.informs.org/Community/MCDM; https://www.informs.org/Community/MCDM; https://www.informs.org/Community/MCDM; https://www.informs.org/Community/MCDM; https://www.informs.org/Community/MCDM; https://www.informs.org/Community/MCDM; http://www.informs.org/Community/MCDM; http://www.informs.org/Community/MCDM; https://www.informs.org/Community/MCDM; <a href="https://www.infor
- AHP Software Expert Choice - <u>http://expertchoice.com/about-us/our-decision-making-methodology/</u>
- C-Change Website and thesis, working papers <u>http://www.coastalchange.ca</u>
- C-Change Facebook site <u>https://www.facebook.com/coastalchange/</u>
- Ocean Management Research Network (OMRN) website <u>https://www.facebook.com/pages/Ocean-Management-Research-Network-OMRN/75437331234?fref=ts</u>
- Sendai Framework for Disaster Risk Reduction, UNISDR http://www.unisdr.org/we/coordinate/sendai-framework
- Hyogo Framework for Action 2005-2015: Building the resilience of nations and communities to disasters http://www.unisdr.org/we/inform/publications/1037
- UNFCCC COP21 Paris website <u>http://unfccc.int/documentation/documents/advanced_search/items/6911.php?priref=600008831</u>
- IRENA & ACE (2016). Renewable Energy Outlook for ASEAN: a REmap Analysis. International Renewable Energy Agency (IRENA), Abu Dhabi and ASEAN Centre for Energy(ACE), Jakarta- <u>http://www.aseanenergy.org/resources/publications/renewable-energy-outlook-for-asean-a-remap-analysis/</u>

3rd China-ASEAN Academy on Oceans Law & Governance

Questions/Discussions

IOI-CANADA

Canadian Operational Centre of the International Ocean Institute

3rd China-ASEAN Academy on Oceans Law & Governance